Using PULSE Vision & Change Rubrics to Assess Departmental Transformation to Student Centered Learning

Pamela Pape-Lindstrom, Everett Community College
Introduction-Background information about rubrics

Website

Snapshot Rubric

Action Plan
Intended Use of Rubrics

1) Departmental self-assessment

- Determine where department is on the path to implementation of V&C recommendations
- Help identify strengths and weaknesses as departments create strategic plans for change
- Compare to other life science programs
- Applicable to all institution types
Intended Use of Rubrics

2) V&C Recognition
Tiered recognition modeled after LEED for Sustainable Building Construction

• Motivation to engage in long term continuous improvement in teaching and learning, resulting in greater students success
Rubric development process

• Researched other certification/accreditation systems (ABET, LEED, ASBMB, BIOL. SOC of UK, etc.)

• Developed vision of ‘Transformed’ with input from community

• Developed rubric criteria to assess ‘transformed’ departments

• Revised criteria using feedback from workshops at scientific meetings, PULSE website, colleagues

• Collected data via online portal
Data Analysis-Weighting Scheme

<table>
<thead>
<tr>
<th>Rubric category/Sub-category</th>
<th>Weighting Factor</th>
<th>Number categories</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum Alignment Rubric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core concepts</td>
<td>X 1</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Core competencies</td>
<td>X 2</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>Assessment Rubric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course-level assessment</td>
<td>X 2</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Program-level assessment</td>
<td>X 4</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Faculty Practice/Faculty Support Rubric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student higher-level learning</td>
<td>X 6</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Learning Activities beyond the classroom</td>
<td>X 4</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>Faculty development</td>
<td>X 2</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>Infrastructure Rubric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Infrastructure</td>
<td>X 1</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Learning spaces</td>
<td>X 2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Resources and support</td>
<td>X 1</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Climate Rubric (all subsections)</td>
<td>X 1</td>
<td>12</td>
<td>48 (8%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>66</td>
<td>596</td>
</tr>
</tbody>
</table>
Data and Analysis Overview

• Data
 – 26 complete data sets – 8 pilot institutions, 18 additional
 – Partial data for 31 additional institutions

• Analysis
 – Do the rubrics show bias by institution types? - Kruskal-Wallis Analysis; ANOVA on each rubric
 – Is each rubric section coherent in what it measures? – Factor analysis
 – What rubric elements are most important to discriminate among institutions? - Principal components analysis
26 Complete Data Sets
Total Weighted Score by Institution

Maximum Score (596)

Institution Type:
- R1
- RC
- LA
- CC

Brancaccio-Taras et al.
CBE-Life Sciences Education in press
Goal: ensure that the highest level of achievement is attainable regardless of institution type

- Do the rubrics show bias by institution type?
- Data is Likert scale data
 - Examined via ANOVAs on ranks (analogous to Kruskal-Wallis)
 - Also examined with ANOVAs on weighted scores
 - Results were the same with both of these approaches
Analysis by Individual Rubric

• Separate ANOVA for each of the five rubrics
• Four of the five rubrics show no differences by institution type
• Faculty Practice/Support rubric exhibits significant differences among institution types for the entire rubric
 – This rubric has three sections A, B, and C
 – There were statistical differences by section for both A (Student Higher Level Learning) and section B (Learning Activities Beyond the Classroom)
 – For details see Brancaccio-Taras et al. CBE-Life Sciences Education *in press*
<table>
<thead>
<tr>
<th>Criteria</th>
<th>0 (Baseline)</th>
<th>1 (Beginning)</th>
<th>2 (Developing)</th>
<th>3 (Accomplished)</th>
<th>4 (Exemplar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. STUDENT HIGHER LEVEL LEARNING (go to instructions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Inquiry-based, open-ended research and interpretation in course labs</td>
<td>No labs expose students to Inquiry-based, open-ended research and interpretation</td>
<td>Exposure to inquiry-based, open-ended research and interpretation is limited; less than 50% of students have this opportunity</td>
<td>Inquiry-based, open-ended research and interpretation modules are used in a large fraction of lab courses; more than 70% of students are exposed</td>
<td>Inquiry-based, open-ended research and interpretation modules are included in the majority of lab courses. Every student has at least one exposure; Some students have several exposures</td>
<td>Inquiry-based, open-ended research and interpretation is the norm in most labs. Nearly all students are accustomed to formulating hypotheses and interpreting data</td>
</tr>
<tr>
<td>2. Opportunities for inquiry, ambiguity, analysis, and interpretation in non-lab courses or course components</td>
<td>Most non-lab courses or course components do not provide opportunities for inquiry, ambiguity, analysis, and interpretation; students have little exposure</td>
<td>25% or less of non-lab courses or course components have opportunities for inquiry, ambiguity, analysis, and interpretation; a subset of students are exposed</td>
<td>~26-50% of non-lab courses or course components have opportunities for inquiry, ambiguity, analysis, and interpretation; many students are exposed</td>
<td>Greater than 50% of non-lab courses or course components provide opportunities for inquiry, ambiguity, analysis, and interpretation; most students are exposed</td>
<td>Opportunities for inquiry, ambiguity, analysis, and interpretation are the norm in all non-lab courses or course components; nearly all students are exposed and many get multiple opportunities to practice</td>
</tr>
<tr>
<td>3. Student metacognitive development</td>
<td>Faculty do not guide students to reflect on and understand how to use learning strategies that are supported by cognitive research</td>
<td>Less than 25% of faculty guide students to reflect on and understand how to use learning strategies that are supported by cognitive research</td>
<td>25-50% of faculty guide students to reflect on and understand how to use learning strategies that are supported by cognitive research</td>
<td>51 - 75% of faculty guide students to reflect on and understand how to use learning strategies that are supported by cognitive research</td>
<td>Greater than 75% of faculty routinely and intentionally guide students to reflect on and understand how to use learning strategies that are supported by cognitive research</td>
</tr>
<tr>
<td>4. Student metacognitive knowledge</td>
<td>Generally students are unreflective and lack awareness or understanding of how to use learning strategies that are supported by cognitive research</td>
<td>10-20% of students are reflective and have some knowledge and understanding of learning strategies that are supported by cognitive research</td>
<td>21-50% of students reflect on their learning and have awareness of and ability to use learning strategies that are supported by cognitive research</td>
<td>51-75% of students reflect on their learning and have awareness of and ability to use learning strategies that are supported by cognitive research</td>
<td>Greater than 75% of students are reflective about their learning and are adept at using strategies supported by cognitive research to improve learning outcomes</td>
</tr>
</tbody>
</table>
Implementation of Vision and Change

• Most progress on Curriculum Alignment
 – no difference by institution type ($p = 0.31$)

• Least progress on Assessment
 – no difference by institution type ($p = 0.17$)
Snapshot Rubric 2.0

- Shorter rubric based on long rubrics
- Most criteria come directly from longer rubrics
- Useful for workshops
- Also used to collect data at PULSE regional meetings
- Online rubric data portal is available
- Applicable to all STEM disciplines with exception of first question about concepts
- Available here:
 http://www.pulsecommunity.org/page/recognition
A. INTEGRATION OF CORE CONCEPTS INTO CURRICULUM

<table>
<thead>
<tr>
<th>Criteria</th>
<th>0 (Baseline)</th>
<th>1 (Beginning)</th>
<th>2 (Developing)</th>
<th>3 (Accomplished)</th>
<th>4 (Exemplar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Students are exposed to the core concepts multiple times as they complete their degree</td>
<td>None of the core concepts are covered multiple times in the curriculum</td>
<td>One or two of the core concepts are covered multiple times in the curriculum</td>
<td>Four of the five core concepts are covered multiple times in the curriculum</td>
<td>All five core concepts are covered multiple times in the curriculum</td>
<td></td>
</tr>
</tbody>
</table>

Core concepts are: Evolution; Structure/Function; Information flow/exchange/storage; Pathways and transformations of energy and matter; Systems

B. INTEGRATION OF CORE COMPETENCIES INTO CURRICULUM

<table>
<thead>
<tr>
<th>Criteria</th>
<th>0 (Baseline)</th>
<th>1 (Beginning)</th>
<th>2 (Developing)</th>
<th>3 (Accomplished)</th>
<th>4 (Exemplar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Students are exposed to the core competencies in significant detail in at least one required course</td>
<td>Students are not exposed to any of the core competencies in significant detail</td>
<td>Students are exposed to one or two of the core competencies in significant detail</td>
<td>Students are exposed to three or four of the six core competencies in significant detail</td>
<td>Students are exposed to all six of the core competencies in significant detail</td>
<td></td>
</tr>
<tr>
<td>3 Students are exposed to the core competencies multiple times in order to complete their degree</td>
<td>None of the core competencies are covered multiple times in the curriculum</td>
<td>One or two of the core competencies are covered multiple times in the curriculum</td>
<td>Three of the six core competencies are covered multiple times in the curriculum</td>
<td>Four or five of the six core competencies are covered multiple times in the curriculum</td>
<td>All six of the core competencies are covered multiple times in the curriculum</td>
</tr>
</tbody>
</table>

Core competencies are: Process of science; Quantitative reasoning; Modeling and simulation; Communication and collaboration; Interdisciplinary nature of science; Understanding of the relationship between science and society

C. COURSE LEVEL ASSESSMENT FOR ITEMS BELOW TERM = SEMESTER OR QUARTER

<table>
<thead>
<tr>
<th>4 Linkage of summative assessments to learning outcomes</th>
<th>Summative assessments are not linked to learning outcomes</th>
<th>Some courses have summative assessments that measure learning outcome achievement</th>
<th>Many courses have summative assessments that measure learning outcome achievement</th>
<th>The majority of courses have summative assessments that measure learning outcome achievement</th>
<th>The majority of courses have summative assessments that measure learning outcome achievement as part of a coherent evidence-based assessment plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Assessment of time in student-centered activities in course evaluation</td>
<td>Time spent in student-centered activities is not measured</td>
<td>Time spent in student-centered activities is documented by approximation after the fact in formal course evaluation at the end of term</td>
<td>Time spent in student-centered activities is documented by approximation after the fact in formal course evaluation at the end of term</td>
<td>Time spent in student-centered activities is documented by approximation after the fact in formal course evaluation at the end of term</td>
<td>Time spent in student-centered activities is documented by approximation after the fact in formal course evaluation at the end of term</td>
</tr>
</tbody>
</table>

D. PROGRAM LEVEL ASSESSMENT

<table>
<thead>
<tr>
<th>6 Assessment of six V&C competencies at the program level</th>
<th>Competencies not assessed at the program level</th>
<th>Development of at least one of the competencies assessed</th>
<th>Development of 2-3 competencies assessed</th>
<th>Development of 4-5 competencies assessed</th>
<th>Development of all 6 V&C competencies assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Use of data on program effectiveness, direct and/or indirect, to strengthen the program</td>
<td>Program is not revised in response to data on program effectiveness</td>
<td>Program revision occurs in response to one source of direct data on program effectiveness only</td>
<td>Program revision occurs in response to indirect data and one source of direct data on program effectiveness</td>
<td>Program revision occurs in response to indirect data and 2-3 sources of direct data on program effectiveness</td>
<td>Program revision occurs in response to indirect data and 4 or more sources of direct data on program effectiveness</td>
</tr>
</tbody>
</table>
PULSE Website
http://www.pulsecommunity.org/page/recognition

Long Rubrics
Portal
Snapshot
Portal
Mental Model

• Typically think of rubrics as assessment tool
• Also function as a guided pathway to implementation
Workshop Overview

Assess Current Reality
• Work with the Snapshot Rubric
• Work with institutional team members if possible
• Score your department
• Discuss

Action Plan Brainstorm
• Identify a goal
• Brainstorm strategies & actions to move forward
• Identify challenges
• Identify allies
• How will you maintain momentum?
Find another group and do a think-pair-share about 1-2 most significant learnings from completing the Snapshot Rubric

Were these findings surprising to you? If so, why?
Action Plan Report Out

Find another group and do a think-pair-share about

What is your main strategy to achieve your goal?

How do you plan to maintain momentum?
Next Steps?

Take a few moments and write down 1-2 specific action items that you will do to begin this process in your department.

Schedule them!!
Past & Present
Recognition Team Members

Karen Aguirre
Judy Awong-Taylor
Teri Balser
Loretta Brancaccio-Taras
Samantha Elliott
Tom Jack
Marcy Kelly

Sara Lindsay
Kate Marley
Kathy Miller
Marcy Osgood
Pamela Pape-Lindstrom
Sandra Romano
Akif Uzman

Data Analysis and graphics preparation
Michael Cahill, Gina Frey, and Jiuqing Zhao of CIRCLE
Additional data analysis by Michael Kelrick, Truman State University

Supported by NSF grant # 1350120
Thank you!

Questions?

Online Qualtrics portal for Snapshot

ppape@everettcc.edu